MODEL-SIZED AND FULL-SCALE DYNAMIC PENETRATION TESTS ON DAMPING CONCRETE

Robert Scheidemann, Eva-Maria Kasparek, Karsten Müller, Bernhard Droste, Holger Völzke

BAM Federal Institute for Materials Research and Testing
Berlin, Germany

PATRAM 2013
August 23rd, 2013
Session D: Package Design: Design-Material Applications

MODEL-SIZED AND FULL-SCALE DYNAMIC PENETRATION TESTS ON DAMPING CONCRETE

Robert Scheidemann, BAM, Germany
Content

1. Introduction
2. Basics
3. Experimental investigations
4. Results
5. Conclusions
Introduction

Shock absorbing footings
- material called ‘damping concrete’
- used in loading areas of interim storage facilities
- reduces loads applied to cask body
- FE material model is needed for a comprehensive evaluation of hypothetical accident scenarios
- determination of material parameters under different loading conditions

Damping concrete
- concrete-polymer composite
- polystyrene parts are admixed to concrete matrix
- parts have a spherical shape with a diameter of about 1.5 mm
- manufactured by HOCHTIEF Construction AG
Mechanical behavior
- analyzed by laterally constrained compression tests on cubic specimen
- nonlinear elastic-plastic behavior
- large volume change at plateau zone at nearly constant stress level
- pronounced compacting after the plateau zone
- stress-strain curve affected by load velocity

Scope of work
- further experimental investigations
- characterization of mechanical behavior under shear stress
- penetration tests on damping concrete
 - different sizes and configurations of specimen
 - varying indenters

Stress-strain curves for cubic specimen

Specimen before and after lateral constrained compression test, edge length = 100 mm
Overview experimental investigations

Experimental matrix of penetration tests

<table>
<thead>
<tr>
<th>Phase</th>
<th>Type</th>
<th>Specimen</th>
<th>Parameters</th>
<th>Front geometry</th>
<th>Lateral friction</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>model-sized displacement driven</td>
<td>100 x 100 x 100</td>
<td>--</td>
<td>plane</td>
<td>with / without</td>
</tr>
<tr>
<td>2</td>
<td>model-sized drop test</td>
<td>1200 x 400 x 500</td>
<td>Joint pattern: - config. A - config. B</td>
<td>plane</td>
<td>with / without</td>
</tr>
<tr>
<td>3</td>
<td>full-scale drop test</td>
<td>2400 x 2400 x 500</td>
<td>--</td>
<td>plane</td>
<td>with</td>
</tr>
</tbody>
</table>
Experimental investigations

Phase 1: Model-sized penetration tests

- Specimen
 - cubic size 100 x 100 x 100 mm³
- Indenters
 - consists of base and penetration element
 - penetration element
 - plane and hemispherical front
 - base element
 - with and without lateral friction
- Test setup
 - specimen holder to ensure lateral constraint
 - loading rate 0.5 mm/s
 - penetration depth 70 mm
 - measuring displacement, forces parallel and perpendicular to load
Experimental investigations

Phase 2: Model-sized dynamic penetration tests

- Specimen
 - size 1200 x 400 x 500 mm³
 - two mortared layers of damping concrete bricks
 - two configurations of joint patterns:
 - drop on tile spacer resp. on one brick
- Indenters
 - consists of base and penetration element
 - base element with and without lateral friction
 - penetration element:
 - plane
 - hemispherical

Indenter configurations

Config. A

Config. B
Experimental investigations

Phase 2: Model-sized dynamic penetration tests

- Test setup
 - drop test machine for guided drop tests
 - \(m = 1,100 \text{ kg} \)
 - \(h = 6.0 \text{ m} \)
 - steel frame to ensure lateral constraint of specimen
 - three penetration positions

Test setup of drop test machine for guided drop tests

Steel frame configurations
Results

Phase 2: Model-sized dynamic penetration tests

- Effect of indenter on penetration depth

- Effect of joint pattern on force
Experimental investigations

Phase 3: Full-scale penetration test

- Verification of FE-model
 - comparison of numerically and experimentally determined penetration depth
- Specimen
 - size 2400 x 2400 x 500 mm³
 - two mortared layers of damping concrete bricks
 - stiff steel frame to ensure lateral constraint
- Indenter
 - full-scale cylindrical cast iron indenter
 - total weight $m = 23$ Mg
 - penetrating part $d = 1100$ mm, $h = 200$ mm
 - plane front
Experimental investigations

Phase 3: Full-scale penetration test

- Test setup
 - drop height $h = 5.0$ m
 - four accelerometers circularly on top
 - high-speed camera recording

- steel frame mortared with grout onto unyielding IAEA target

Damping concrete footing with full-scale indenter before drop test and in drop position

Penetration sequences and imprint of indenter
Results

Phase 3: Full-scale penetration test

- experimentally determination of penetration depth
- calculated by
 - deceleration data
 => $s_{\text{max}} = 132 \text{ mm}$
 - optical tracking
 => $s_{\text{max}} = 131 \text{ mm}$
- penetration depth vs. time curves coincide

- comparison with numerical calculation
 => $s_{\text{max}} = 134 \text{ mm}$

(Qiao, L., et al.: Development of a Finite Element Model for Damping Concrete under Severe Impact Loads; PATRAM 2013)
Conclusions

- development of FE material model for shock absorbing damping concrete
- information about characteristics of failure process under shear stress needed
- penetration tests were conducted
 - variations of specimen size and indenter configuration
- effect of joint pattern as well as indenter geometry was determined in dynamic model-sized penetration tests
- comparison of numerically and experimentally determined penetration depth in a full scale test show very good agreement
- additional tests in particular penetration tests are needed to get more information about complex failure process

Acknowledgement
Tests were performed in course of the research project ENREA funded by the German Federal Ministry of Education and Research (no. 02S8588) and in cooperation with WTI GmbH.
Thank you!

Robert Scheidemann, Eva-Maria Kasparek, Karsten Müller, Bernhard Droste, Holger Völzke

BAM Federal Institute for Materials Research and Testing
Berlin, Germany

PATRAM 2013
August 23rd, 2013