Investigation of Elastomer Seal Behavior for Transport and Storage Packages

Matthias Jaunich,
BAM Federal Institute for Materials Research and Testing, Germany
Investigation of Elastomer Seal Behavior for Transport and Storage Packages

Matthias Jaunich,
Wolfgang Stark, Dietmar Wolff, Holger Völzke

BAM Federal Institute for Materials Research and Testing
Summary

- Elastomers are highly complex materials
- Properties are strongly influenced during:
 - Compounding
 - Processing
 - Application
- The application conditions encountered in transport/storage containers are challenging:
 - Regarding temperature range
 - long time scale of use
 - continuous irradiation
• Elastomer production
• Seal function
• Application in containers
• Important topics
 – e.g. behavior at low temperatures
• Summary
At the beginning
Elastomer production
Function / Influencing factors

leakage rate Q:

$Q = Q_{\text{perm}} + Q_{\text{trans}}$

$Q_{\text{perm}} = P \cdot A/d \cdot (p_1 - p_2)$

$Q_{\text{trans}} = f(\text{material contact, pressure difference})$
Container application

• Application in containers
 – broad temperature range
 – long time
 – continuous irradiation
 – static conditions, but with possibility of highly dynamic events

• Comparison with other applications of seals
 – piping / pipelines
 – aviation/automotive
Container application

• Application in containers
 – broad temperature range
 – long time
 – continuous irradiation
 – static conditions, but with possibility of highly dynamic events

• Comparison with other applications of seals
 – piping / pipelines
 – aviation/automotive

www.endlagerung.de
Identified important topics

• General sealing process
 – How does the molecular and/or micro-structure correlate with the properties
 – Which properties are mainly responsible for the function
 • Common requirements for material selection: hardness, tear strength, elongation at break
 • Really needed: low Compression Set and Stress Relaxation

• Temperature dependence of several properties

• Aging behavior over extended times
 – Property change due to e.g. chain scission, plasticizer loss or additional crosslinking
 • standard criterion 50% drop of tear strength
 • better 80% Compression Set?
Thermal Analysis: glass rubber transition

- DMA: E'-onset -26°C
- DMA: E'-inflection point -20°C
- DMA: E'-offset -14°C
- DMA: $\tan \delta$-peak -8°C
- DMA: E''-peak -18°C
- DSC: Heat flow-onset -23°C
- DSC: Heat flow-inflection point -19°C
- DSC: Heat flow-offset -15°C

The glass-rubber transition temperature (T_g) has to be defined: conditions and method of measurement, analysis method.

So far no direct correlation between the glass-rubber transition temperature and seal failure is known.

Additional tests are required:
- Compression Set / Component Tests

23.08.2013 PATRAM 2013 11
Compression Set (CS) according to ISO 815

Initial state

Compression by 25% at room temperature

Heating/Cooling to test temperature and subsequent storage

Release and Recovery

Two ways of analysis:
- a single value after a fixed time span (30 minutes) after release of the compression force
- continuous measurement over a certain time after release of the compression force

\[
CS = 100\% \frac{(h_0 - h_2)}{(h_0 - h_1)}
\]
Comparison with standardized test:

- similar results are obtained
- only slight differences between the standardized and the new method (~2-3 % CS)
- measurement is much faster and shows a higher resolution
- is performed automatically
- allows a quick overview of the recovery behavior of a material at different temperatures

“Compression Set” with DMA

Graph shows the change in compression set (CS) as a function of time at various temperatures. The graph is labeled with the following temperatures: -39 °C, -34 °C, -29 °C, -24 °C, -19 °C, -14 °C, -9 °C, -4 °C, 1 °C, 6 °C, and 11 °C. The x-axis represents time in minutes, ranging from 0 to 60, and the y-axis represents the CS DMA as a percentage, ranging from 100 to 0.
$y = y_\infty + \sum_i A_i e^{-\frac{t}{t_i}}$
Component test

- at critical temperature, drastic increase in leakage rate
- continuous reduction followed by faster decrease in the range of the glass rubber transition
- closure much lower than opening of leakage path
- hysteresis like behavior observed

Summary

• Elastomers are highly complex materials

• Properties are strongly influenced during:
 – Compounding
 – Processing
 – Application

• The application conditions encountered in transport/storage containers are challenging
 – Regarding temperature range
 – long time scale of use
 – continuous irradiation
THANK YOU FOR YOUR ATTENTION