PROPOSAL FOR REGULATORY IMPROVEMENT ON LOAD ASSUMPTIONS FOR ROUTINE CONDITIONS OF TRANSPORT

Andreas Apel
Viktor Ballheimer
Christian Kuschke
Sven Schubert
Frank Wille

Federal Institute for Materials Research and Testing (BAM)
Berlin, Germany

PATRAM 2013, August 18-23, San Francisco, CA USA
Better load case information for routine conditions of transport by a fundamental revision of Appendix IV

<table>
<thead>
<tr>
<th>Mode</th>
<th>Acceleration factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Longitudinal</td>
<td>Lateral</td>
</tr>
<tr>
<td>Road</td>
<td>2g</td>
</tr>
<tr>
<td>Rail</td>
<td>5g</td>
</tr>
<tr>
<td>Sea/water</td>
<td>2g</td>
</tr>
<tr>
<td>Air(^a)</td>
<td>1.5g (9g forward)</td>
</tr>
</tbody>
</table>
Outline

(1) Introduction
(2) Principal Ways of Improvement
(3) General Proposal
(4) Proposal more detailed
(5) Summary & Final Remarks
Introduction. Why better and harmonized load case data?

(1) Facilitation of international transport

(2) Appendix IV of the IAEA Advisory Material TS-G-1.1 is an important reference for load case information about transport of RAM packages under routine conditions

(3) Obvious deficiency of Advisory Material load case data for routine conditions of transport

IAEA Technical Meeting-44891, Vienna, July 15-19 2013 decided the establishment of an international working group on acceleration and stacking
Para. IV.8 → “These acceleration factors represent the package inertial effects, and are simultaneously applied…”

TABLE IV.1. ACCELERATION FACTORS FOR PACKAGE RETENTION SYSTEM DESIGN

<table>
<thead>
<tr>
<th>Mode</th>
<th>Acceleration factors</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Longitudinal</td>
</tr>
<tr>
<td>Road</td>
<td>2g</td>
</tr>
<tr>
<td>Rail</td>
<td>5g</td>
</tr>
<tr>
<td>Sea/water</td>
<td>2g</td>
</tr>
<tr>
<td>Air<sup>a</sup></td>
<td>1.5g (9g forward)</td>
</tr>
</tbody>
</table>

combination / rail shunting / normal conditions of transport / heavy haulage / dead weight / quasi-static forces or force pulse waveform / speed limits / consistency of Table IV.1 and IV.2 / cyclic load cases ...
Principal Ways. Are slight improvements enough?

Question must be answered by the international working group on acceleration and stacking.

Some aspects of the Terms of Reference

- Identify the relevant standards, guides and regulations …

- Identify the scope and limit conditions for application of the recommended levels of forces …

- Collect the results of the available acceleration campaign measurements …

- Revisit the text of appendix IV of TS-G-1.1 …

IAEA TM-44891, Vienna, July 15-19 2013
(1) Deletion of data: No load case data better than not reasonable values?

(2) Slight improvements

(3) Acceleration values according to different types of packages?

(4) Acceleration values according to classes of packages mass, speed limits, inside buffers, with or without of rail shunting ...

(5) Most likely more → Proposal by BAM
General Proposal. Principal Solution

Appendix IV, Advisory Material TS-G-1.1, modified Paragraph IV.9

“The values given for each mode are in accordance with most national and international regulations.”

IAEA Survey

Answered by Member States
General Proposal. Preparations

<table>
<thead>
<tr>
<th>Advantage / Disadvantage</th>
<th>Applicable to</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measurement & Simulation</td>
<td>precise load case information</td>
</tr>
<tr>
<td></td>
<td>restricted to specific situation/condition</td>
</tr>
<tr>
<td>Technical Standards</td>
<td>established & approved</td>
</tr>
<tr>
<td></td>
<td>No special reference to RCT</td>
</tr>
</tbody>
</table>
General Proposal. Principal Procedure

<table>
<thead>
<tr>
<th>Stage</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Definition Standard Case
General Conditions: Enabling that the comparison of load case data from technical regulations and standards for routine conditions of transport is possible.</td>
</tr>
<tr>
<td>2</td>
<td>Improvement of Guidance (e.g. Table IV.1)
General Conditions: up to date summary of acceleration values and criteria
refresh reference list and member state acceptance</td>
</tr>
<tr>
<td>3</td>
<td>Exceptional Case(s)
Specific Conditions: examples of simulations & measurements</td>
</tr>
</tbody>
</table>
Definition of the standard case (to make regulations comparable)

- Design: two bogies, bogie distance, track gauge, vehicle length and so on
- Mass ratio between the masses of the package and the freight wagon
- No particular routes and vehicles, maybe speed restriction, rail shunting possible
- Connection to strength criterion?
Proposal more detailed. Stage two.

Standard case was clarified

IAEA Survey

Answered by member states

Which standards/codes incl. acceleration values and criteria are accepted?
Is there a need of minimal combination of acceleration values?
Proposal more detailed. Stage two. Possible results

(Survey results for the standard case)

Sample of accelerations in one direction

One not too high value covering the bulk of values taken for Table IV.1

Few outliers listed in Table IV.2

Substantiation of Table IV.1 and IV2
What is about cases outside the standard case?

No to deal with every possible constellation of routine transport

→ Restriction on exemplary cases for example by a survey of test drive measurements

→ Important here: Heavy haulage, acceleration without rail shunting, maybe inner buffers and special designs of fright wagons

→ Representation of the survey results possibly in a separate report
(1) Guidance of Advisory Material is reference No1 for load case data and safety criteria applied internationally

(2) Present situation: Load case data deficient for a clear international application

(3) Because of (1) and (2): IAEA TM-44891 decided to establish an international working group on acceleration and stacking

(4) First task of WG is to define the precise goal. What kind of guidance should be given? Several options exists.
Summary & Final Remarks

(5) International survey could clarify different approaches and values for standard and non-standard situations of transport
possible outcome: up-to-date reference list(s)

(6) Our proposal focus on a separation between technical guidelines for standard transport situations and mainly measurements for exceptional circumstances like heavy haulage.

(7) Improvement / International harmonization of load case data is a challenge.